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Alternative Bioassays of Kinship between Loci
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Summary

In this study four asymptotically equivalent estimates of kinship are derived, in the general case and for
kinship between multiallelic loci. Two estimates based on x2agree closely, with the Shannon estimate giv-
ing the smaller variance. The PAH, GH, GM, and HBB systems conform to a recombinational model
with an evolutionary size of -4,000 and a ratio of recombination to physical distance of -1.4 x 10-5
morgans/kb, as predicted on the basis of the genetic and physical lengths of the human genome. The INS
and DlS12 systems have a much more rapid decline of kinship with physical distance, suggesting overlap-
ping RFLPs (unrecognized allelism), recombinational hot spots, or selection. Sources of error in predicting
kinship over small distances are discussed.

Introduction

Genetic relationship between individuals, popula-
tions, and loci is measured by kinship, which may be
predicted on the basis of genealogy or migration and
bioassayed on the basis of gene frequencies, discrete
phenotypes, quantitative traits, clans, or surnames
(Morton et al. 1971). Here we are concerned with
alternative bioassays based on gene frequencies and
with their validation vis-A-vis a known population
structure that specifies isolation by distance, a
cladogram of diverging populations, or (in this pa-
per) a linear order of linked genes. The question to be
answered is which formulation permits inference of
the known structure with minimal error. Similarity
metrics that do not estimate kinship have no simple
genetic interpretation and will not be considered.

Theory

Let Qk be the kth gene frequency in an array of
populations, and let qki be the corresponding fre-
quency in the ith population (k = 1, . . . , K; i = 1,

. , I). Then the expected homozygosity in a cross
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between populations i and j with kinship wpj is
E(qkjqkj) = Qk + wijQQk(l - Qk). After summing
and rearranging, the homozygosity estimate of kin-
ship is

qkiqki - Q2

= k~~~~~
(pij(H) =k XQ

Weighting each element in the original equation by
l/Qk before summing and rearranging yields the x2
estimate of kinship

Y. (qkiqkilQk) 1
'Pij() =

K-i

For a codominant system this is proportional to Pear-
sonian x2 with observed frequency Vj7~j and ex-
pectation Qk. The corresponding Shannon estimate
of kinship based on the x2 likelihood ratio is

'Pij(S) =

2 EVkjqjin (Vbajq7kj/Qk)
k

K-1

evaluated under the convention that 0 In 0 = 0.
These estimates are unbiased for i =# j. If codominant
gene frequencies in the ith population are based on a
disomic locus in a sample of Ni individuals, an un-
biased estimate of kinship in the population is

Wij - 1/2N,
ii= 1 - 1/2Ni 1
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where wpi as an estimate of kinship in the sample is
given by the above equations for i = j.
These formulas do not exhaust kinship estimates.

A less direct approach begins with gene frequency
deviations, Aki = qki - Qk, and uses the Wahlund
(W) principle to write the covariance AkAki = Qk (1
- Qk)wkij. Then mean kinship is

(qij = Wk'Pkij/ZWkv
k

where Wk > 0 is a weight. If we take Wk = 1 - Qk,
we obtain the x2 and Shannon estimates. However,
taking Wk = Qk (1 - Qk) gives the Wahlund estimate
of kinship,

(qki -Qk) (qkj - Qk)
YPij(W) = 1

This has the same expectation as the homozygosity
estimate but in practice is different, being always
positive for i = j. Of course, small values can become
negative after correction for sample si7e. If gene fre-
quencies are replaced by surnames so that homozy-
gosity becomes isonymy, the above equations remain
valid except that tp must be divided by 4.

Similar formulas apply to kinship between loci

(Morton and Simpson 1983). Then q, is the hap-

lotype frequency for allele s at locus i and allele r at
locus j, and Qr, = qrq, is the expected haplotype
frequency under linkage equilibrium. If r = 1, . .. , R
and s = 1, . . . , S. the number of df (replacing K - 1)
is (R - 1)(S - 1). Formulas for cp, are given in table
1. If both loci are diallelic, cpii reduces to p2, where p is
both the standardized disequilibrium statistic and the
correlation between loci (Hill and Robertson 1968).
The x2 estimate has been used for pairs of diallelic
loci by Chakravarti et al. (1984b). This is generalized
to any number of alleles in table 1, where ypj is the
mean value of p2.

Sometimes a particular allele is selected at one

locus. Let qs be the conditional frequency of allele s at
the other locus, and let Q, > 0 be the corresponding
marginal frequency in the population. This special
case is also given in table 1.

Since kinship between loci is asymptotically a qua-

dratic form, it has bias 1/n if based on a count of n

haplotypes (Weir and Hill 1986). After being de-
noted with a prime symbol, the formulas in table 1
are transformed to

pP - 1/n

'Pij= 1 1/n

If the physical distance between two loci is k kilo-
bases and if the ratio of the recombination frequency

Table I

Kinship between Loci
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(0) to physical distance is R = 0/k, the expected kin-
ship between loci at equilibrium between drift and
recombination is

1 1

4Neo + 1 4NeRk + 1'

where Ne is the evolutionary size of the population.
Since Ne and R are unknown and R varies among

systems, we set 4NeR = C as the parameter to be
estimated. On the basis of the noncentral x2 distribu-
tion, the information about (p is taken to be W = (n
- 1)(1 + Ck)/(Ck + 2n - 1). To estimate C we

minimize the function f = IW[9 - 1/(1 + Ck)]2/2
for m estimates of kinship and stable weights W, with
constrained to the 0,1 interval. This gives the New-

ton-Raphson iteration in which weights stabilize as C
converges: C = C0 + U/K --C > 0, where U

-IWk[94 - 1/(1 + Ck)]/(1 + Ck)2; K = IWk2/(1
+ Ck)4; and the SE of C is V/2f/(m - 1)K. These
calculations are performed by the computer program
HAPLOKIN (Appendix).

Results

Morton and Simpson (1983), Chakravarti et al.
(1984a, 1984b), and Morton and Lew (1985) devel-
oped methods to map closely linked loci on the basis
of haplotype frequencies and concluded that kinship
between loci is the appropriate statistic. We have
applied our formulas to these and other data sets
(table 2).
Homozygosity kinship consistently exceeds the x2

and Shannon estimates. We do not understand this
systematic difference between asymptotically equiva-
lent methods. The variance of homozygosity kinship

is notably high. As remarked by Morton et al.

(1971), homozygosity is dominated by large gene fre-
quencies, which are reciprocally weighted in efficient
estimates. Therefore we shall not consider the homo-
zygosity estimate further.
The Wahlund estimate is comparable to the homo-

zygosity estimate and less reliable than the two esti-
mates based on x2. This is to be expected, since the
Wahlund weights discriminate against rare genes.

Even for equal gene frequencies, extreme linkage dis-
equilibrium leads to great discrepancy between the
homozygosity and Wahlund estimates, on the one

hand, and the x2 or Shannon estimates on the other.
For example, if q11 = q22 = .5 and q12 = q21 = 0,
then in large samples qp(H) = p(W) = 1/3, 9(C) = 1,
and 9p(S) = 21n2, which is censored to 1.
Shannon and x2 kinship agree extremely well,

reflecting the convergence of Pearsonian and likeli-
hood ratio x2 in large samples. The variances are

acceptably small, with a tendency for the Shannon
estimate to have a smaller variance. This agrees with
the generally better performance of likelihood ratio
X in small samples (Fisher 1922).

Discussion

A remarkable feature of the data is that systems
highly polymorphic over sequences <30 kb show
rapid decline of kinship with distance. There are

problems in studying kinship over distances not
much greater than the RFLPs themselves. Length
polymorphism may induce substantial relative error

in nominal distance, and the RFLPs may overlap (un-
recognized allelism). If some haplotypes are missing
in a large sample, is this due to linkage disequilibrium
or allelism? In the latter event, the "loci" should be

Table 2

e± SE for Four Kinship Bioassays

C ± SE
MAXIMUM

SYSTEM (Sourcea) k 9(H) (P(W) (p(C) C(S) V./V,
PAH (1) .............. 96.0 .786 .200 1.379 .313 .240 .056 .219 .052 1.15
INS (2) .............. 20.1 32.756 19.098 92.321 19.538 4.662 2.654 4.185 1.760 2.27
GH (3) ............... 38.0 .830 .682 .813 .434 .114 .062 .088 .045 1.93
D11S12 (4) ........... 6.9 31.319 78.420 138.564 359.702 6.137 9.951 6.878 9.888 1.01
GM (5) .............. 136.0 .268 .081 .550 .228 .194 .077 .158 .068 1.27
HBB (6) .............. 50.2 1.369 .798 1.245 .627 .240 .118 .182 .085 1.94

a 1, Chakraborty et al. 1987; 2, Chakravarti et al. 1986; 3, Chakravarti et al. 1984b; 4, Barker et al. 1984; 5, Migone et al. 1985; and 6,
Pagnier et al. 1984.
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pooled. Since allelic correlations are negative, the ef-
fect of such pooling is to raise the estimate of kinship
and therefore lower the estimate of C; for exam-
ple, the closely linked RsaI and TaqI sites in INS
showed no - - haplotype in 35 U.S. blacks and
86 Caucasians and Pima Indians, suggesting that
they form an allelic series over a 2-kb region. Treat-
ing them as such reduces the estimate of C from
4.7 to 3.0 for x2 kinship and from 3.1 to 2.9 for
Shannon kinship.
Chiasma frequencies suggest that the 3 x 106 kb

of the haploid genome have a genetic length of 30
morgans in males. If the X chromosome and the
greater 0 in females are taken into account, this im-
plies that R for the whole genome is -1.4 x 10-5
morgans/kb. Ne in human populations of diverse ori-
gin is thought to be -4,000, on the basis of weak
evidence. These values are consistent with C = 4NeR
= .224. It is not plausible that Ne should vary among
systems within a population. Therefore much larger
values of C, as observed for INS and Dl iS 12, suggest
either failure of the model (e.g., maintenance of poly-
morphism by selection) or a locally elevated value of
R. For the HBB system, a recombinational hot spot
has been inferred in the 9.1-kb region 5' to the nor-
mal 13 gene (Chakravarti et al. 1984a). This is not
apparent in those haplotypes carrying the sickle cell
hemoglobin gene that are considered here, perhaps
reflecting their short evolutionary history.
Our goal in this study was not to describe or inter-

pret variation in estimates of C but to compare alter-
native kinship bioassays. It is clear that the homo-
zygosity approach is inferior to the two x2-based
metrics, of which the Shannon estimate has smaller
variance in this material. We therefore advocate this
metric for determining kinship between either popu-
lations or loci whenever data are reduced to hap-
lotype frequencies. Conventional kinship bioassay re-
mains preferable when (1) data are reported as
phenotype frequencies for factor-union systems, (2)
there may be dominance, (3) the information ma-
trix is of manageable size, and (4) the object is to
estimate kinship between populations (Morton
1975).
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Appendix
HAPLOKIN

This procedure estimates kinship between loci on
the basis of haplotype frequencies.
I. Assignment

Data, job, summary, and prolix files are required.
A control-point (CP) file is optional.
II. Input
The job file has a major control-HK (A,1) (B,3)

(C,2) (N,4,n)-specifying numeric fields for as many
as 12 loci and for the haplotype count N, where n is
the sample size. Blanks are read as zero. FM, ED, and
CC controls are required. An ED control specifies
allele codes for a particular locus, e.g., ED (A,1,2).
Alleles not specified are pooled into a class desig-
nated 0. An optional MC control gives physical coor-
dinates of loci, e.g., MC (0, 5.4, 23.1, 66.1, . . .), for
which the distance between loci may be calculated as
kii = MCi- MCI.
III. Analysis
Four estimates of kinship between loci are cal-

culated (table 1). Co is assumed to be .25. If during
iteration C - 0, it is set to C/2. Only pairs of loci
with specified physical distance are used to estimate
C. Convergence is declared if U2(m - 1)/2fK <
lo-10.

IV. Output
The summary file gives file assignments; allele fre-

quencies for each locus; values of R, S. and K; and
the four kinship estimates for each of the n (n - 1)/2
pairs of n loci, where R and S are the numbers of
nonzero allele frequencies at the two loci. In addition,
C, the variances, and the SEs are computed. The pro-
lix file gives haplotype frequencies for each pair of
loci and successive iterations for each estimate of C.
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